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Abstract

Lithium-ion batteries (LIB) are synonymous with the modern age of electrification, yet

advances in battery design, manufacturing, and chemistry are still urgently needed. Mathematical

modelling plays an important role in understanding LIB performance and can provide physics

informed design directions, optimisation and explain outcomes. We present an exploration

and detailed comparison of the commonly used homogenised Doyle-Fuller Newman (DFN)

model and the high fidelity X-ray computed tomography (CT) based microstructural model for

LIBs. We provide insights into the relative benefits of each model and highlight why they are

important to battery technology development. Alongside experiments, we use the models to

explore and compare two common cathode chemistries, lithium nickel manganese cobalt oxide,

Li[Ni0.6Co0.2Mn0.2]O2 (NMC622), and lithium iron phosphate, LiFePO4 (LFP), and investigate

the influence of electrode thickness and discharge current density. The DFN and CT image-based

models show good alignment for averaged LIB metrics, such as the voltage response and active

material utilisation, demonstrating that homogenised, computationally inexpensive models are

an essential basis for battery design and optimisation. The CT-based microstructural model

provides further insight into localised particle and electrode dynamics, taking into account

heterogeneities that are a source of battery degradation. Qualitatively, the models also compare

well with experimental secondary ion mass spectrometry (SIMS) mapping of the Li concentration

in the active particles across the electrode thickness.

As battery manufacturing continues to grow in response to the electrification of transport, the

lithium-ion battery (LIB) is increasingly becoming a commoditised item. The LIB supply chain is

predicted to grow by 30% annually up to 2030, reaching a market size of 4.7 TWh, compared

with 0.7 TWh currently.1 There is commercial advantage and growing pressure to be able to

accelerate the cell design and optimisation process and to reduce costs. Optimising cell design

quickly is challenging for cell manufacturers because new battery materials and applications emerge

frequently and often unexpectedly. Delivering design optimisation to meet these challenges can

only be achieved by a shift away from dependence on trial and error and move towards greater

automation including the use of mathematical modelling.2

*Email: eloise.tredenick@eng.ox.ac.uk
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Many battery models have been developed to meet the needs of cell designers.3,4 The scope of

these models is multiscale, going from the pack-level5 all the way down to simulating individual

particles6 and molecules.7 The simplest class of battery models are those described by equivalent

circuit models, which represent the current/voltage dynamics of the battery in terms of circuit

elements such as resistors and capacitors.8–10 Due to the simplicity of these models and their

computational efficiency, circuit models currently dominate applications where the value of an

accurate current/voltage prediction is paramount, such as battery management systems (BMS)

and pack-level modelling.11 However, by abstracting the physics of the battery, circuit models are

generally not appropriate for cell design problems.

The most simple class of physics-based models are single particle models (SPM)12 and the many

variants include those with electrolyte dynamics (SPMe),13–15 thermal effects,16,17 degradation,18

and the equivalent hydraulic model.19 The SPM/SPMe models assume that the active particle Li

concentration is constant through the electrode thickness, an assumption that is not appropriate for

the thick electrodes of commercial cells and during fast charging.

The benchmark model for LIB modelling is the Doyle-Fuller-Newman (DFN) framework, or

pseudo-two-dimensional (P2D) model, which is a physics-based continuum model based on porous

electrode theory.14,20,21 The DFN model comprises a set of coupled partial differential equations

(PDEs), including nonlinear parabolic and elliptic PDEs. The DFN model is commonly 1D through

the electrode thickness, x, and pseudo 1D through the radius of the spherical particle, r, and is

hence referred to as “pseudo-2D” (1 + 1D). A continuum based approach is applied to describe

the electrode microstructure, which includes a description of the carbon binder domain (CBD) and

the interconnected pores, and the particles are assumed to be spherical and evenly distributed

through the electrode thickness. Potentials in the solid particles and liquid electrolyte are modelled,

along with the Li ion concentration in the particles and liquid electrolyte, and the reaction current

density. The Python implementation PyBaMM22 uses the DFN model, building on DUALFOIL23

code. Extensions of the DFN model have been considered recently and include multiple layers of

different chemistries within the anode, cathode or both, and is termed the multilayer DFN model

(M-DFN),24 and the many particle DFN model (MP-DFN) that is able to consider an active particle

size distribution.25,26 There are homogenised 3D DFN models (3 + 3D, that use three-dimensions

to describe both the electrode and the particles), that can allow for more realistic descriptions such

as active particles that are not spherical, and particle cracking.3,21 3D microscopic, 3D homogenised

and DFN-type models including active particle size distributions were compared for a 3C discharge

of a LiCoO2 (LCO) electrode,26 providing important information including detailed voltage profiles.

There are different modelling approaches for lithium iron phosphate, LiFePO4 (LFP) including

single particles that are not described by spherical diffusion, but instead phase behaviour,6 and

phase transitions using a shrinking core.27

Table 1: Comparison of DFN and CT scan domain models, where ε is the electrolyte volume fraction, b is the tortuosity
and R is the particle radius.

DFN model - averaged domain CT scan domain

Experimental data validation ac-
curacy

✓ ✓

Computation Time Seconds Hours to days
Geometry Additional parameters required for ε, b or R Solved over individual particles - don’t need ε, b or R as

found from CT scan domain (except b for LFP).
Special domain features - Ability to alter phase compositions using techniques such

as morphological operations. Electrode volumes can also
be copied, mirrored and stacked to change electrode thick-
ness.28

Dimensions 1D in x (through electrode), plus 1D (pseudo) in r

(spherical particle radius), so pseudo-2D (1+1D)
3D in x,y,z, plus 3D (pseudo) through particle (of any
shape), so pseudo-6D (3+3D).

X-ray CT Instrument - Resolution of desired geometrical features is dependent
on limitations of CT instrument and morphology of the
microstructure in question, e.g. inability to capture LFP
CBD.

Software required MATLAB®, Python, C++ and others COMSOL®MultiPhysics, Simpleware ScanIP and others.
Optimisation ✓ ✓Possible but involves increased computation times.

X-ray computed tomography (CT) imaging has only recently been applied to battery research
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and in general CT is a relatively new tool for the electrochemical field.4 CT image-based models are

also continuum models, but they permit spatial resolution of the collection of particles that comprise

a representative electrode volume. Image-based models are able to capture the realistic shape

of particles accounting for their non-spherical geometry and non-uniform dispersion within the

electrode volume, and both factors have been shown to play a key role in battery performance and

long term degradation.28 In some cases, given sufficient CT imaging resolution and computational

resources, it is possible to resolve the microstructural details within the CBD. However, this detail is

often homogenised due to the lack of CT imaging resolution or to maintain practical computation

times. CT image-based models use similar equations to the P2D DFN model, but the particle size is

implicit within the model, and the CBD, if resolved, is modelled as a separate electrically conductive

medium. CT image-based models are resolved in 3D across the electrode thickness, including the

particle in 3D, and therefore is sometimes referred to as pseudo-6D (3 + 3D). The model is created

by discretising the segmented CT image to mesh elements. Since the governing electrochemical

and transport equations are solved for the exact geometry, it is possible to probe the influence of

local heterogeneities, such as variations in pore and particle size, shape and distribution.4,28–30

The electrochemical descriptions can be coupled with Li intercalation or de-intercalation induced

stresses in the active particles, and for example the influence of particle voids on degradation

behaviour can be investigated.31 There has been limited comparisons of image based to DFN

models. There is one study32 showing a brief comparison of voltage data for LFP electrodes with

good agreement but they did not consider the full details of the CBD.

The advantages and disadvantages of the DFN and microstructural CT model are summarised

in Table 1. While the CT model simulations are information-rich, the drawbacks of solving the

model with high spatial resolution are the computational demand and complexity,4 along with the

need for high resolution CT scanners. For problems such as estimating the model parameters, this

computational effort can be limiting.

LIB experiments commonly focus on the electrode voltage response, whereas physics-based

models can reveal electrode internal processes, such as the underlying Li ion concentration profiles

and spatially-resolved potential responses. Further, much of a LIB’s practical performance relates

to Li dynamics within the electrode. Unfortunately, spatially and chemically resolving the local

Li concentrations in the active particles by experiments, such as various types of electron or

other microscopies, is difficult. A promising experimental technique is plasma focused ion beam/

secondary ion mass spectrometry (PFIB/SIMS), which allows qualitative visualisation of the active

particle concentration gradients at the scale of the electrode thickness, at a particular point in the

charge or discharge.4,33–37

In this paper, we compare the homogenised modelling approach of the DFN model with the

CT image-based microstructural model. These two models contain the same physics, with similar

governing equations, but are resolved over different domains. Single particle (SPM and SPMe) type

models that set the solid particle concentration as constant through the electrode, or equivalent

circuit models, are too simple for this problem. We aim to understand the effects of non-uniform

particle and electrolyte gradients through the electrode thickness, when discharging at high C

rates (1C, 2C, 5C) and for relatively thick (80 µm, 90 µm and 160 µm) electrodes. We apply the

models to two electrode chemistries of lithium nickel manganese cobalt oxide, Li[Ni0.6Co0.2Mn0.2]O2

(NMC622), and lithium iron phosphate, LiFePO4 (LFP), to avoid chemistry-specific conclusions. The

model outputs are compared to standard voltage experiments and to PFIB/SIMS based Li mapping

across an LFP electrode.
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Results and Discussion

Electrode Characterisation

Fig. 1 shows the particle radius histograms for the NMC622 and LFP electrodes, obtained from CT

images. The NMC and LFP are positive-skewed, with the NMC distribution more positively-skewed

than LFP (skewness of 0.96 and 0.79 for NMC and LFP, respectively). The total number of particles

sampled is significantly higher for LFP (392 particles within a 90 µm thick electrode), compared to

NMC (172 particles within a 80 µm thick electrode) because of the smaller LFP average radius of

0.4 µm compared with 4.9 µm for NMC. There are a small number of particles with radii up to

three times the mean radius, especially for NMC where there are eight large particles (larger than

11 µm) including particle with radii of 14.7 µm. The relatively small LFP particle radius required a

nano-CT scanner to resolve, rather than a more commonly available micro-CT scanner. The nano-CT

scanner also allowed the acquisition of the CBD in the coarser length-scale NMC electrode. The

average electrolyte volume fraction is 0.293 and 0.375, for NMC and LFP, respectively, obtained

from CT images.

Figure 1: Histograms of the NMC622 and LFP particle radius, obtained from CT scans. The mean radius is given by the
red dashed line. The mean NMC particle radius is 4.9 µm ± 3.1 µm and LFP is 0.4 µm ± 0.1 µm. There are some
large particles with radii 14.7 µm and 1.2 µm for NMC and LFP, respectively.

Modelling Results

We solve the (i) homogenised Doyle-Fuller-Newman model (DFN model), and (ii) microstructurally

resolved CT-based model considering the DFN equations (CT model), as described in “Methods”.

A total of six cases are considered: NMC at 1C and 5C, for electrode thicknesses of 80 µm and

160 µm, and LFP at 2C and 5C for a 90 µm electrode thickness. We compare the model results to

experimental data for LFP, while models for NMC have been compared to experiments reported

elsewhere.24,28 The computational domains for both models are shown in Fig. 2, which also shows

the different phases of active particle, carbon binder and pore space.

Fig. 3 shows the simulated voltage against capacity for NMC (A) and LFP (B). For NMC in Fig. 3

(A), the profiles compare well in terms of qualitative shape and predicted capacity, especially at 1C.

For LFP in Fig. 3 (B), the profiles agree with experiment at 5C, while the agreement of the 2C profile

is reduced because the experimental training data for model parametrisation was taken at 5C. The

voltage response shows a sharp drop in capacity at 5C for the 160 µm thick NMC electrode, and

at 5C for the 90 µm thick LFP electrode. This drop in capacity is indicative of under-utilisation of

the active particles, where the normalised particle concentration has not reached unity throughout

the electrode. This arises because of Li ion concentration depletion in the electrolyte and the local

Li concentration tends to zero. Considering the fundamental differences between the two models,

in terms of homogenised or microscopic, the voltages are encouragingly similar. The results also

underline the importance of correctly specifying critical parameters and functions in both models,
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Figure 2: (A) The computational domain for the image-based CT model for NMC (Lp = 80 µm and 160 µm) and LFP
(Lp = 90 µm) electrodes. Lcc = 10 µm and Lsep = 16 µm, while B =W = 30 µm for NMC electrodes and B =W = 10
µm for the LFP case. (B) The domain for the pseudo-2D DFN model (equations solved both through the electrode in x

and in a representative idealised particle in r), where all relevant dimensions match the microstructural model in (A).
The scales are different between sub-figures and is described in more detail in Fig. S1.

such as the open circuit potential (OCP) function for each chemistry, which were determined by

fitting experimental results, and the OCP function is more dominant in determining voltage results

than the geometric domain.24

0 34 68 102 136 170

Capacity (mAh/g)

2.5

2.8

3.2

3.5

3.9

4.2

V
o

lt
ag

e 
(V

)

CT, 1C, 80 m

DFN, 1C, 80 m

CT, 1C, 160 m

DFN, 1C, 160 m

CT, 5C, 80 m

DFN, 5C, 80 m

CT, 5C, 160 m

DFN, 5C, 160 m

0 26 52 78 104 130

Capacity (mAh/g)

2.5

2.8

3.2

3.5

3.9

4.2

V
o

lt
ag

e 
(V

)

CT, 2C

DFN, 2C

Experimental data, 2C

CT, 5C

DFN, 5C

Experimental data, 5C

Figure 3: Voltage profiles with capacity for NMC (A) and LFP at 90 µm (B). NMC622 and LFP are characterised by
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Figure 4: Simulated normalised Li concentration at the centre of NMC particles - 1C, 80 µm (A), 5C, 80 µm (B), 1C,
160 µm (C), and 5C, 160 µm (D), at range of ToD (time of discharge). The normalised Li concentration at the centre
of the particle (cs,p,centre/cs,p,max) is shown as a function of distance from the current collector. 0% ToD is the start of
discharge and 100% is the end. DFN model results are represented by solid lines and CT model results are represented
by markers. The CT model results also indicates the particle radius shown with the marker size, along with the moving
average of the concentration shown in black. The moving average is obtained from 30 (A,B) or 50 (C,D) particles. The
current collector (CC) is on the left and separator on the right of each subfigure.

Figs. 4 and 5 shows the simulated Li active particle concentrations at the centre of the particle

for NMC and LFP, respectively, as a function of distance through the electrode thickness, at different

time of discharges (ToD). The DFN model is shown as the solid lines, while the CT results are shown

as points from individual particles, where the size of the point is related to the particle radius. The

moving averages of the particle concentrations for the CT model results are shown as black points.

In all cases, the CT results show that, as expected, the smaller particles lithiate faster than the larger

particles. For NMC in Fig. 4, there is good agreement between the DFN and CT models, particularly

at 1C in (A) and (C). As the DFN model is solved using an average approach, including the mean

particle radius of the CT image data, this supports the good agreement to the CT moving average as

expected. At 5C in (B) and (D) the agreement is close to the moving average, but there is a larger

distribution of Li concentrations produced with the CT model. At the largest electrode thickness

and C rate in (D), the Li concentration profile becomes noticeably sloped, with regions close to

the current collector at much lower concentration than close to the separator. The particles are

not fully discharged through the thickness of the electrode and through the particle radius, which
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represents significant under-utilisation of active particles related to electrolyte depletion.

For LFP in Fig. 5 and Supplementary Fig. S2, the slope of the Li profiles are markedly different

with an ‘S’ shape or travelling front across the electrode thickness as the discharge proceeds,

approximately segregating discharged and charged regions of the electrode. This distinctive shape

arises from the voltage plateau in the OCP profile.24 As seen earlier in the voltage profiles, for

5C in Fig. 5 (B), there is better agreement than at 2C (A) because the model parameters were

fitted at 5C. Supplementary Fig. S3 shows the simulated state of charge (SOC) for LFP compared

with the SOC estimated experimentally (calculated based on measured capacity). The modelled

SOC profiles agree with one another, and with the experimental data. At 2C, the SOC changes by

approximately 80% across the cycle, while at 5C the SOC changes only by 40% because of a larger

extent of electrolyte depletion and active material under-utilisation.
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Figure 5: Simulated normalised Li concentration at the centre of LFP particles - 2C (A) and 5C (B), at range of ToD,
across a 90 µm electrode. The normalised Li concentration at the centre of the particle (cs,p,centre/cs,p,max) is shown as a
function of distance from the CC. 0% ToD is the start of discharge and 100% is the end. DFN model results are solid
lines and CT model results are points. The CT model concentration moving average is shown in black. The moving
average is obtained from 200 particles. The CC is on the left and separator on the right of each subfigure.

Fig. 6 shows the CT model results for the normalised Li concentration of the active particles

for NMC (A) and LFP (B) (whereas Figs. 4 and 5 showed only the centre). The thinner 80 µm

NMC electrode (A) is the only case that is fully discharged at 100% ToD, represented by a single

colour throughout and indicating full lithiation. For a 90 µm thick LFP electrode (B), the active

particles are close to being completely lithiated at the end of discharge but a through thickness

Li gradient has developed as previously described. For the same electrode at 5C, only particles

approximately half way across the electrode are significantly lithiated by the end of discharge at

100% ToD. A similar profile arises for a 160 µm thick NMC electrode (A). Supplementary Fig. S2

shows, encouragingly, for LFP that the DFN and CT models give similar Li concentrations at the

active surface. The Li concentration in the centre of the particles is similar to the surface.
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Figure 6: 3D CT model results for normalised Li concentration in the active particles (cs,p/cs,p,max) for NMC (A) and LFP
(B). The figures are not the same scale.
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Fig. 7 shows the simulated concentration of Li in the electrolyte through the electrode thickness

for NMC and LFP as a function of discharge time. The DFN and CT results compare well over both

space and time. All subfigures exhibit complete Li ion concentration depletion, except for the case

of 80 µm thick NMC electrode at 1C (A). The Li concentration in the electrolyte for LFP (C,D)

changes with time more significantly than NMC, whereas NMC (A,B) quickly reaches a steady-state,

especially for 1C (A), where the steady-state has been reached after 10% ToD. The CT model for

LFP has less range in concentrations at a particular point in the electrode and a specific ToD. For the

CT model for NMC (A, B), there are a range of concentrations at a particular point in the electrode

and a specific ToD, because of the wide range of particle radii and pore sizes.

Figure 7: Simulated Li electrolyte concentration (ce) of NMC electrodes at 1C, 80 µm (A), 5C, 160 µm (B), and LFP at
2C, 90 µm (C), 5C, 90 µm (D), at range of ToD (time of discharge). The CT model is shown as points and DFN as solid
lines. The CC is on the left and separator on the right.

Fig. 8 shows a comparison of the calculated through thickness Li concentration for the CT model

(A), DFN model (B) and SIMS Li mapping (C,D), for an LFP, 90 µm thick electrode at the end of a

5C discharge. The model shows the normalised Li concentration of active particles (cs,p/cs,p,max), and

the SIMS concentrations are the normalised intensity of the 7Li+ signal from the particles (after

the electrolyte was dried in a protective atmosphere). Consistent with the ‘S’ shape or travelling

front of the Li concentration profile for LFP described earlier (Figs. 5), there are two reasonably

well delineated regions of high and low concentration, with a gradual region approximately at the

centre of the electrode thickness. The regions of relatively high Li concentration near the separator

are similar across the subfigures. Given that the SIMS results were not used for the model fitting (as

the voltage measurements were used instead) these independent results are positive. Qualitatively,

the comparison between experiment and both models is encouraging and a comparatively rare

study of simulation and experiments of spatially resolved, internal Li dynamics. Using LFP as the

active material is useful for this type of qualitative comparison because its open circuit potential

shape with a long plateau of constant voltage leads to a distinct separation between charged and
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Figure 8: Li concentration of active particles for a 90 µm thick LFP electrode at 5C discharge, at the end of discharge
(100% ToD). (A) and (D) are the simulated normalised Li concentration of solid particles, cs,p/cs,p,max. (B) SIMS mapping
of 7Li+ presented as an 8-bit colormap with pixel value ranging from 0 to 255. (C) is the normalised moving average of
the Li ion intensity (n=10) from (B). (D) is the Li concentration averaged over the particle radius. The subfigures have
been aligned at the ends of the electrode, with error of ±1 µm. The results in (A) are replotted from Fig. 6 and (D) is
from Supplementary Fig. S2 (C).

uncharged regions across the electrode thickness at intermediate states of charge.

Table 2: Number of fitted parameters for the DFN and CT models. *εe,p is taken from the experimental results as it is
calendared to 30% porosity, then fitted slightly from there.

DFN Total CT Total

NMC622 bp,kp,Rc,εCBD,p 4 kp,σCBD 2
LFP ε∗e,p 1 bp,Ds,p,kp,εCBD,p 4

Table 2 shows the total number of parameters required to be fitted to experimental data for

each model. The number of fitted parameters are generally similar, with the CT model for NMC and

the DFN model for LFP having the lowest number of parameters (2 and 1, respectively). The fitting

of LFP to experimental data started by (i) using the DFN model to find a baseline set of parameters,

(ii) further refining using the CT model and calculating averaged parameters from the CT results,

and then (iii) the DFN model adopted the parameters refined by the CT model where possible (for

example the radius of the particle, Rp, carbon binder domain volume fraction, εCBD,p, tortuosity, bp,

and reaction rate constant, kp). This shows the benefits of coupling a CT-image based model with a

DFN model, and vice versa; using a homogenised DFN model to first find parameters as a basis for

the CT model. To reduce the number of fitted parameters further, additional experiments could be

undertaken, for example, to obtain directly values for internal resistance, Rc, and NMC electronic

conductivity in the CBD, σCBD, LFP particle diffusivity, Ds,p, and tortuosities.38,39
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Conclusion

The dynamic response of the LFP and NMC-based LIB electrodes has been simulated by a Doyle-

Fuller-Newman and CT-based model. For the six electrode cases investigated, the relatively simple

DFN model incorporates sufficient homogenised microstructural detail to agree with the detailed

microstructural descriptions available in the CT model. Both models can explain experimental

data suggesting they have sufficiently captured the governing mechanisms of lithium ion electrode

dynamics. The CT and DFN models agree well for NMC and LFP based electrodes, in terms of

voltage response, particle and electrolyte Li concentration, and state of charge. The models also

agree qualitatively with the SIMS mapping of 7Li+ across the thickness of an LFP-based electrode.

The DFN model is useful for rapid optimisation and design of battery electrodes and reveals internal

electrode dynamics such as critical spatial distributions of Li ion concentration in the electrolyte

and particles. The image-based model is capable of capturing and predicting heterogeneities in

electrode performance that are important in electrode degradation and operation of batteries under

more demanding conditions, such as high current densities.31,40 The DFN model requires 20 s

or 50 s and 2.5 GB on a desktop computer, while the CT model requires 8 h or 15 h and 100 GB

random access memory to execute on a high-performance computer, for NMC and LFP, respectively.

As computing capabilities and CT-scanners continue to increase in power, resolution, availability

and reduce in cost, the CT model approach can be expected to gain in popularity. We demonstrated

how the DFN and CT models can interact beneficially when parametrising the models. Future work

might include a 3D homogenised DFN model that could be utilised to tailor local microstructure

variations, allowing simulation of non-spherical particles, as well as degradation effects including

cracking and swelling.3,21

Methods

Mathematical Models and Parameters

Numerical Solution Procedure

The DFN model, which is described in Supplementary equations (S1) to (S7), is nondimensionalised

and solved numerically, by discretising the model’s PDEs using second order central differences

to approximate the spatial derivatives, along with averaging of the diffusivity and conductivity

functions at the control volume faces. The resulting system of ordinary differential equations is

solved using “ode15s” including a mass matrix, within MATLAB® 2023a.41 Timings for the code

solutions for a 1C discharge are shown in Table 4. Parameters are shown in Table 3 and the fitting

was based on the four cases for NMC-based electrodes and the LFP-based electrode at 5C, using

the same parameters between the DFN and CT models where possible, and fit as a priority to the

voltage data.

The CT image-based model was solved using the finite element method. Simpleware ScaniP

(Mountain View, CA, USA) was used to discretise the segmented image, giving linear tetrahedral

meshes with the quantity of mesh elements and degrees of freedom shown in Table 4. The

electrochemical and transport equations as outlined in Supplementary equations (S8) to (S11),

were solved in COMSOL®MultiPhysics (v6.1, Sweden). Time stepping was handled using 2nd order

backward Euler differentiation. The CBD is explicitly resolved for NMC but not for LFP with the CT

model, which is instead modelled in a homogenised DFN approach.

The parameter values (Table 3) for the reaction rates, kp were fitted and align with those found

elsewhere,42,47 along with the initial concentrations in the solid particles, cs,0,
48 and solid particle

diffusivity for LFP, Ds,p.
49 The parameters between the DFN and CT models in Table 3 are either

the same or similar in most cases, and for LFP the DFN model has the same parameters as the CT

model except for εe,p. For NMC, the differences in the electronic conductivities in the solid, σs,p,

between the CT and DFN models are to be expected due to the CBD being defined explicitly for the
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Table 3: Model parameters for NMC622 and LFP based electrodes. The ‘Exp’ values are measured. If the CT model
parameters are different to the DFN model, it is shown in brackets. *Average particle radius was determined from the
CT scan data.

Parameter Description Unit NMC LFP Source

A Electrode cross-sectional area m2
9×10

−10
1×10

−10 CT
bp Bruggeman tortuosity factor - 1.5 (CT n/a) 2.3 -,CT
bs - 1.5 1.5 -

ce0 Initial concentration of Li ions in elec-
trolyte

mol/m3 1,000 1,000 Exp

cs,p,0 Initial concentration of Li ions in solid
particles

mol/m3 12,662 570 -

cs,p,max Maximum concentration of Li ions in solid
particles

mol/m3 48,700 22,806 42 43

Ds,p Diffusivity of Li ions in solid m2/s 3.995×10
−14

1×10
−15 NMC44 , -

F Faraday constant sA/mol 96485.332 96485.332 45

g Thermodynamic factor (equivalent to (1+
∂ ln f

∂ lnce
))

- 1.43 1.43

I Current density A/m2 I = Ic/A

Ic Applied current mA 3.14 × 10
−5, 1.57 × 10

−4,
6.29× 10

−5, 3.14× 10
−4 (1C,

5C 80 µm, 1C, 5C 160 µm)

5.56 × 10
−6, 1.38 × 10

−5

(2C, 5C)

kp Reaction rate constant m2.5s−1mol−0.5
7.5×10

−12 (CT 9×10
−12) 1.25×10

−12 -
Lp Thickness µm 80, 160 90 CT, Exp
Ls µm 16 16 Exp

R Universal gas constant J/K/mol 8.314463 8.314463 45

Rc Internal resistance Ω m2
1.8×10

−3 (CT n/a) n/a
Rp Radius of particle µm 4.9* 0.4* CT
T Constant absolute reference temperature K 293.15 (20

◦
C) 293.15 (20

◦
C) Exp

t+ Transference number of the electrolyte - 0.37 0.37 46

εCBD,p Carbon binder domain volume fraction - 0.135 (CT n/a) 0.25 -
εe,p Electrolyte volume fraction - 0.3 (CT n/a) 0.2625 (CT n/a) -
εe,s - 1 (CT n/a) 1 (CT n/a) Exp
σs,p Electronic conductivity in solid S/m 5 (CT 0.17) 5 Exp
σCBD Electronic conductivity in CBD S/m n/a (CT 10) - Exp

CT model only. For the DFN model, there was a resistance added for NMC as it is known to have

higher internal resistance than LFP.50 A function for the solid particle diffusivity, Ds, was considered

but did not alter the results significantly, so was not used further.

Table 4: Timings of DFN model code in MATLAB®2023a, and CT scan model in COMSOL®MultiPhysics, for NMC
(80 µm) and LFP (90 µm), both at a 1C discharge. N is the number of nodes in each particle radius, r and through
thickness compartment, x, and N = 11 is for testing purposes only. The ‘∗’ indicates the fine mesh for plotting the article
figures. The DFN model was solved on a Dell, Windows 10 desktop PC, Intel(R) Core(TM), i7-10700 CPU @ 2.9GHz,
16 GB (average practical usage 2.5 GB), random access memory (RAM), 64 bit system. The CT model was solved on a
Dell, Windows 10 workstation PC, Intel(R) Xeon(R), Platinum 8260 CPU @ 2.4GHz, 64 bit, 750 GB RAM (average
practical usage 100 GB), high-performance computer.

N States Run time

NMC - DFN 11, 11 154 0.7 s
27, 27 810 4.4 s
35, 55∗ 2,130 20.4 s

NMC - CT 7.3 ×10
6 8.3 ×10

6 8 hr

LFP - DFN 11, 11 154 0.35 s
27, 27 810 4.2 s
43, 65∗ 3,034 49.9 s

LFP - CT 4.3 ×10
6 6.9 ×10

6 15 hr

Experiment

LFP Cell Fabrication

Electrodes were comprised LFP (MTI, USA), carbon additive (C65, Imerys, UK), and polyvinylidene

fluoride binder (PVDF, Solef 5130, Solvay, UK). Active materials and carbon additive were dried

overnight under vacuum and a 3wt.% PVDF in 1-Methyl-2-pyrrolidinone (NMP, Sigma) solution

was then produced by stirring overnight. The electrode slurry was produced by mixing the 3wt.%
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PVDF in NMP solution with the active material and carbon conductive additive using a planetary

mixer (Thinky ARE-250). The solid material mass fraction ratio was 92:4:4 (active material:

carbon additive: binder) for the slurry, with a solid content fraction of 40%, targeting an electronic

conductivity of 5 S/m. The electrode slurry was cast onto carbon-coated aluminium foil (MTI,

18 µm total thickness) using a doctor blade and drawdown table. Dried electrode sheets were

calendared to a thickness that resulted in a porosity of 30%. Electrodes disks with a diameter of

14 mm were punched from the electrode sheet before drying and bringing into an argon-filled

glove box (Mbraun, H2O < 0.1 ppm, O2 < 0.1 ppm). Electrochemical cells are prepared in the

glove box using a Li metal counter electrode, 16 µm separator (H1609, Celgard) and 1 M lithium

hexafluorophosphate (LiPF6) in ethylene carbonate (EC): ethyl methyl carbonate (EMC) (30:70

wt.%) with vinylene carbonate (2 wt.%) electrolyte (ELYTE). Coin cells were tested using a battery

cycler (LBT21084, Arbin) in a temperature-controlled environment at 20
◦
C. The mathematical

models use the values for cell weight for NMC of 2.19× 10
−7 g, 4.38× 10

−7 g (thickness 80 µm,

160 µm), and LFP of 1.84×10
−8 g (thickness 90 µm).

Table 5: Information for the NMC half cell

Description Value

Specific capacity at 0.05C 175 mAh/g
Min Voltage 2.5 V
Max Voltage 4.2 V

Table 6: Information for the LFP half cell

Description Value

Specific capacity at 0.05C 150 mAh/g
Min Voltage 2.5 V
Max Voltage 4.2 V

Computed Tomography Scan Acquisition

Both NMC and LFP microstructures were captured using lab-based nano X-ray tomography. The

methodology for NMC microstructure acquisition can be found in a previous study,28 while the LFP

image was acquired as follows. A small disk-shaped electrode with a diameter of approximately

1 mm was obtained from an electrode sheet. The disk was then affixed to a pin head using a

fast-setting epoxy. A micro-milling laser technique was utilised to reduce the diameter of the

electrode to about 90 µm, resulting in a pillar-shaped specimen. A lab-based X-ray nano-CT system

(Zeiss Xradia Ultra 810 X-ray microscope, Carl Zeiss, CA, USA) was used to scan the LFP electrode

pillar. The scan was performed with an isotropic voxel size of 64 nm and a field of view of 64 µm

× 64 µm. To collect 1601 sequential projections over a 180° rotation, a quasi-monochromatic

X-ray beam with a Cr characteristic emission energy of 5.4 keV was used. Each projection had an

exposure time of 140 s.

Secondary Ion Mass Spectrometry

A Thermo ScientificTM HeliosTM G4 plasma focused ion beam microscope (PFIB) CXe DualBeamTM

system, incorporating a Hiden EQS secondary ion mass spectrometer (SIMS), was used for precise

cross-sectioning and spatial mapping of Li across an LFP-based electrode cross-section. The electrode

was fabricated using the method described in “LFP Cell Fabrication”. Measurements of the spatially

resolved 7Li+ isotope intensity were carried out by application of an acceleration voltage of 30 keV,

a probing current of 0.1 nA, resolution of 360 nm and a field of view of 50 µm × 105 µm.
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Data Availability

The data that support the findings of this study are available from the corresponding authors upon

reasonable request.

Code Availability

The DFN simulation and post-processing codes that have been used to produce the results of

this study are available as open-source code by author E. C. Tredenick here (link available after

acceptance) and the CT model upon reasonable request.
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